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PHYSICALLY MOTIVATED FALSE CONVERGENCE PROTECTION

The zero-variance biasing derived in [1] was implemented in a test code and the

convergence rate was better than the square root of the number of samples in some

cases. In other cases, false convergence to the wrong mean was observed. After

examining the false convergence displayed, I was able to see what was going wrong

as a violation of some physical constraints. This memo derives these constraints.

Note that the general idea behind the constraints derived herein is similiar to Henry

Lichtenstein's work[2]. Both methods use known local information about the under-

lying transport process to compare against the learned simulation results.

Consider a bidirectional transport problem along the x-axis. The particles can move

only forward or backward on the interval (0; T ). A unit weight particle source is

started moving forward at x = 0. The desired estimate is the number of particles

escaping at x = T .

De�nition 1.

L(x) = expected score of a unit weight particle at x moving backward (1)

De�nition 2.

N(x) = expected score of a unit weight particle at x moving forward (2)

De�nition 3.

� = total macroscopic cross section (3)

De�nition 4.

�
s = total scattering cross section (4)

De�nition 5.

f = probability of no direction change upon scatter (5)



Distribution

XTM:96{198 (U)

May 20, 1996- 2 -

De�nition 6.

b = probability of direction reversal upon scatter (6)

In the test code, N(x) and L(x) are unknown and must be estimated. The estimates

ofN(x) and L(x) are then used for biasing the next Monte Carlo transport calculation

in an iterative fashion.

The physical constraints on N(x) and L(x) started from Eqs. 28 and 46 of [1].

These equations are now repeated. For a particle at x moving forward, the weight

multiplication upon collision at x+ s is

w
c
(x+ s) =

�N(x)

�N(x+ s)�N 0(x+ s)
(7)

(The prime indicates the derivative). For a particle at x moving backward, the weight

multiplication upon collision at x� s is

w
c
(x� s) =

�L(x)

�L(x� s) + L0(x� s)
(8)

The most obvious physical constraints are that the expected score must be nonneg-

ative,

N(x) � 0 (9)

L(x) � 0 (10)

and the denominators of Eqs. 7 and 8 must be positive

�N(x+ s)�N 0(x+ s) > 0 (11)

�L(x� s) + L0(x� s) > 0 (12)

Just imposing constraints 9-12 alleviated the false convergence problem in most cases.

However, there were occasional problems when Eqs. 11 or 12 were just barely sat-

is�ed. This meant very large weight multiplications at some collisions. False con-

vergence tended to occur when none of these large weight multiplications occurred

and nonconvergence tended to occur when they occurred. By nonconvergence it is

meant that the iterative learning process failed and the calculational e�ciency did

not improve with each iteration. A way was needed to bound Eqs. 11 and 12 away

from zero.

First, consider a particle moving in the forward direction at x. The set of next events

(for an analog particle) may be partitioned into four possibilities:
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1. With probability 1 � �dx the particle does not collide in dx and its expected

score at x+ dx is then N(x+ dx).

2. The particle collides in dx with probability �dx and then is absorbed with

probability (1��
s
=�). Thus, an absorption occurs in dx with probability �dx(1�

�s
=�). The expected score after absorption is zero.

3. The particle collides in dx with probability �dx, survives the collision with

probabilty �
s
=�, and then scatters forward with probability f . Thus with prob-

ability �dx(�s
=�)f the particle will have an expected score between N(x) and

N(x + dx). Because the probability already has a dx term, then to �rst order

we may take the expected score as N(x).

4. The particle collides in dx with probability �dx, survives the collision with

probabilty �
s
=�, and then scatters backward with probability b. Thus with

probability �dx(�
s
=�)b the particle will have an expected score between L(x)

and L(x + dx). Because the probability already has a dx term, then to �rst

order we may take the expected score as L(x).

Using the above partition, the expected score at x may be written as

N(x) = (1��dx)N(x+dx)+�dx[1�(�
s
=�)] �0+�dx(�

s
=�)fN(x)+�dx(�

s
=�)bL(x)

(13)

Rearranging Eq. 13,

[�f�
s
N(x) + �N(x+ dx)]dx = N(x+ dx)�N(x) + �

s
dxbL(x) (14)

Now dividing Eq. 14 by dx and letting dx! 0 yields

N(x)(� � �s
f) = N 0(x) + �

s
bL(x) (15)

Because the last term on the right hand side is nonnegative,

N(x)(� � �
s
f)�N 0(x) � 0 (16)

If this is required everywhere, then the denominator in Eq. 7 is bounded away from

zero, except when N(x) = L(x) = 0.

Second, consider a particle moving in the backward direction at x. The set of next

events (for an analog particle) may be partitioned into four possibilities:

1. With probability 1 � �dx the particle does not collide in dx and its expected

score at x� dx is then L(x� dx).



Distribution

XTM:96{198 (U)

May 20, 1996- 4 -

2. The particle collides in dx with probability �dx and then is absorbed with

probability (1��
s
=�). Thus, an absorption occurs in dx with probability �dx(1�

�s
=�). The expected score after absorption is zero.

3. The particle collides in dx with probability �dx, survives the collision with prob-

abilty �
s
=�, and then forward scatters with probability f . Thus with probability

�dx(�
s
=�)f the particle will have an expected score between L(x) and L(x�dx).

Because the probability already has a dx term, then to �rst order we may take

the expected score as L(x).

4. The particle collides in dx with probability �dx, survives the collision with

probabilty �
s
=�, and then backward scatters with probability b. Thus with

probability �dx�s
=�b the particle will have an expected score between N(x)

and N(x � dx). Because the probability already has a dx term, then to �rst

order we may take the expected score as N(x)

Using the above partition, the expected score at x may be written as

L(x) = (1��dx)L(x�dx)+�dx[1� (�
s
=�)] �0+�dx(�

s
=�)fL(x)+�dx(�

s
=�)bN(x)

(17)

Rearranging Eq. 17,

[�f�
s
L(x) + �L(x� dx)]dx = L(x� dx)� L(x) + �

s
dxbN(x) (18)

Now dividing Eq. 18 by dx and letting dx! 0 yields

L(x)(� � �
s
f) = �L0(x) + �

s
bN(x) (19)

Because the last term on the right hand side is nonnegative,

L(x)(� � �
s
f) + L0(x) � 0 (20)

If this is required everywhere, then the denominator in Eq. 8 is bounded away from

zero, except when N(x) = L(x) = 0.

Note that Eqs. are special cases of Eqs. 47 and 48 in [3]. However, it was easier to

derive the equations here than to treat them as special cases of Eqs. 47 and 48.
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